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LETTER TO THE EDITOR 

Transf er-matrix approach to the one-dimensional 
percolation problem 

Zhao-qing Zhang and Jue-lian Shen 
Institute of Physics, Chinese Academy of Sciences, Beijing, China 

Received 7 April 1982 

Abstract. The transfer-matrix method is used to find the exact phase diagrams and the 
correlation length exponents Y for the one-dimensional site, bond and site-bond percola- 
tion problems with bonds connecting the Lth-nearest neighbours ( L  up to 3). For the 
site percolation, our results agree with the exact result obtained from the generating 
function method, Y = L, while for the bond percolation, we found much richer critical 
phenomena. If all the L bonds have equal occupation probability, our results predict 
U = L ( L +  l ) / Z .  

In the past decade, the percolation problem has caused renewed and wide interest 
because of its close relationship with thermal critical phenomena (Kasteleyn and 
Fortuin 1969). Recently, the generating function method has been used to solve the 
one-dimensional site percolation problem with Lth-nearest-neighbour bonds (Klein 
et a1 1978). The critical behaviour is found to be L dependent. In particular, the 
correlation length exponent v is found to be exactly equal to the number of neighbour- 
ing bonds L. However, if the same method is applied to the one-dimensional bond 
percolation with further-neighbour bonds, it will turn out to be rather complicated. 
It is well known that the one-dimensional king model with only nearest-neighbour 
interaction can be solved exactly by both the generating function and transfer-matrix 
methods. A recursive method which is similar to the transfer-matrix method was 
recently introduced to solve the one-dimensional Ising model with higher-order 
interaction (Marchi and Vila 1980). It will be interesting to apply the transfer-matrix 
method to the one-dimensional percolation problem with further-neighbour bonds. 
In this letter, we report some results obtained by using the transfer-matrix method 
to the one-dimensional site, bond and site-bond percolation problems with further- 
neighbour bonds ( L  up to 3). 

It is trivial to solve the one-dimensional percolation problem with only the nearest- 
neighbour bond. We will start with the next simplest case; site percolation with the 
next-nearest-neighbour bonds ( L  = 2). In this case, the one-dimensional chain can be 
drawn schematically in figure 1. The ( i ,  i +  1) and ( i ,  i +2)  bonds are respectively the 
nearest- and next-nearest-neighbour bonds. 

In the standard transfer-matrix method, one usually partitions the system into 
columns, and the transfer-matrix transfers the probability distribution of various 
configurations in the Nth  column to the (N+ 1)th column. If we assume that the 
probability of the first and Nth  columns being connected decays as exp(-N/e) for 
large N, where 6 is the correlation length, then 5 can be obtained from the largest 

Case (I): site percolation with L = 2 
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eigenvalue A, (excluding the trivial value A = 1) of the transfer matrix by using the 
relation (Derrida and Vannimenus 1980) 

6 = -l / ln A,. (1) 
In figure 1, suppose we take the sites i and i + l  as the Nth  column; then we can 
choose either the sites i + 1 and i + 2 as the next column or the sites i + 2 and i + 3 as 
the next column. Both ways will lead to exactly the same critical behaviour. Here 
we will choose the former one because it gives a much simpler transfer matrix. By 
doing so, the word ‘column’ does not have any geometric meaning. However, we will 
still use the name for convenience. 

There are four possible configurations in each column. For the Nth  column, we 
have the following configurations: (1) neither i nor i + 1 connected to the first column, 
( 2 )  i but not i + 1 connected, (3) i + 1 but not i connected, ( 4 )  both i and i + 1 connected. 
Similarly there are four configurations in the ( N  + 1)th column with i and i + 1 replaced 
by i + 1 and i + 2 respectively. If P,, ( N )  is the probability that the Nth  column is in 
the configuration n, then the transfer matrix M::), which connects P,(N + 1) and 
Pn(N),  is 

4 

n = l  
P ,  ( N  + 1) = 1 M::)P,, ( N ) ,  

LO 0 P P J  
where p is the site occupation probability and q = 1 - p .  The superscript ‘(s2)’ of M 
denotes the transfer matrix for site percolation with L = 2. It is easy to find that M1s2)  
has eigenvalues A = 1, 0, [ p  f ( p 2  + 4 ~ q ) ” ~ ] / 2 .  Since the correlation length 5 is infinite 
at the critical percolation p c ,  from (1) it follows that A,(p , )  = 1. Here we have 
A, = [ p  + ( ~ ~ + 4 p q ) l ’ ~ ] / 2  which gives p c  = 1. In the critical region, q is small (q  = 1 - 
p = p c - p ) .  Expanding A, for small q, to the leading order in q we find A,= 
1 -q2+0(q3) .  Substituting A, into (l), we have 

-2 “ q  . 1 
l im[=- 
q-ro ln(1 - q 2 )  (4) 

From ( 4 )  we obtain v = 2, which agrdes with the exact results of Klein et a1 (1978). 

For L = 3, we drew a similar schematic diagram for the one-dimensional chain in 
figure 2, where the bond connecting sites i and i + 3 is a third-neighbour bond. Now 
each column contains three sites. We choose the sites i ,  i + l  and i + 2  as the Nth 

Case (2): site percolation with L = 3 

i * 2  i + 4  ++ / * 1  / + 3  i t  1 /*3 

Figure 1. Schematic diagram for a one-dimensional 
chain with next-nearest-neighbour bonds. 

Figure 2. Schematic diagram for a one-dimensional 
chain with third-nearest-neighbour bonds. 
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column and the sites i + 1, i + 2 and i + 3 as the (N + 1)th column. There are eight 
configurations in each column. For the Nth  column, we have the following configur- 
ations: (1) none of i, i + 1 and i + 2 connected to the first column, (2) i but not i + 1 
or i + 2 connected, (3) i + 1 but not i or i + 2 connected, (4) i + 2 but not i or i + 1 
connected, ( 5 )  both i and i + 1 but not i + 2 connected, (6) both i and i + 2 but not 
i + 1 connected, (7) both i + 1 and i + 2 but not i connected, (8) all of i, i + 1 and i + 2 
connected. If W,(N) is the probability that the Nth column is in the configuration 
n, we have the following transfer matrix: 

8 

n = l  
W m ( N + l ) =  1 M%)Wn(N), 

- 1 4 0 0 0 0 0 0  
0 0 4 0 4 0 0 0  
0 0 0 4 0 4 0 0  
o p o o o o o o  
0 0 0 0 0 0 4 4  
o o p o p o o o  
o o o p o p o o  

-0  0 0 0 0 0 p p 

It is easy to show that the above transfer matrix has maximum non-trivial eigenvalue 
in the small 4 limit, A, = 1 - 4 3  + o(q4). From ( l ) ,  we obtain p c  = 1, lim,,o 6 = 4 - 3  and 
Y = 3. This again agrees with the exact results of Klein et a1 (1978). The transfer 
matrix has the dimension x 2L, and becomes increasingly difficult to solve when L 
becomes large. Since there are no approximations in this method, we find no reasons 
to doubt that this method will also yield the exact result: Y = L for any finite L. 

Let p and r respectively be the occupation probabilities for the nearest- and next- 
nearest-neighbour bonds and 4 = 1 - p ,  s = 1 - r. Using the same definition for P, (N)  
as in case ( l ) ,  we now have a different transfer matrix 

Case (3): bond percolation with L = 2 

4 

P m ( N +  1) = 1 M Z P , ( N ) ,  
n = l  

(7) 

From the maximum non-trivial eigenvalue of (8) we find the following results (cf figure 
3). (i) Lines AC and BC are the only two critical lines on which A,= 1 and 6 is 
infinite. (ii) Near the line CB (excluding point C), 4 is small. We have limq,o 6 = s-24-1 
and Y = 1. (iii) Near the line AC (excluding points A and C), s is small. We have 

6 = p 4 - : ~ - ~  and Y = 2. (iv) Near the point A but on the line OA, we have 
lims,o 6 = 2s- and v = 1. These are just the results of the pure nearest-neighbour 
bond but with twice the bond length. (v) Near the point C, both 4 and s are small. 
We have limq,s+o 6 = 4 s and Y = 3. Here the limit that both 4 and s approach 
zero is taken simultaneously. We can also put 4 = cs and then take the s + 0 limit, 
where c is any positive constant. 

-1 - 2  
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Figure 3. Phase diagram and correlation length Figure 4. Phase diagram and correlation length 
exponent for case (3). exponent for case (4). 

Case (4): site-bond percolation with L = 2 
In addition to case (3), now we also dilute the site occupation. Let w be the site 
occupation probability with u = 1 - w ; then the transfer matrix (8) becomes 

r i  1-rw o 0 1  

The above matrix reduces to (8) of case (3) when w = 1, and reduces to case (1) when 
p = r = 1 .  From (9) we find the following results (cf figure 4). (i) Lines BG and G D  
are the only critical lines. (ii) Near the line BG (excluding point G),  u and q are 
small. We have limq,u-.o 6 = (su + s ' q ) - '  and v = 1. (iii) Near the line DG (excluding 
the points D and G), s and u are small. We have lims.u+o t = p ( ( l  +q)su +u2+qs2)- '  
and v = 2. (iv) Near the point D but on the p = 0 plane, we have lims.u+o 5 = 2(s + U)-' 
and v = 1. (v) Near the point G, if we approach the point G from the w = 1 plane, 
we have, for small s and q, lims,q+O 5 = q- 's- '  and v = 3. (vi) Near the point G but 
approaching G from below the w = 1 plane, q, s and u are all small. We have 
limq.s.u+o 5 = (su + U')-' and v = 2. 

Let p, r and x be the occupation probabilities for the nearest, next-nearest and 
third-nearest-neighbour bonds with q = 1 - p ,  s = 1 - r and y = 1 - x. Using the same 
definition for W , ( N )  as in case (2), instead of (6),  the transfer matrix becomes 

Case (5): bond percolation with L = 3 

0 "1 i o o o q  0 qY 0 

l y 0 0  0 0 0 
o o s o  sy 0 0 

0 0 r 0 1 - s y  0 0 
0 0 0 p 0 1 - q y  0 ! 0 0 0 0  0 0 1-qs 1-qsy 
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From ( lo ) ,  we find the following results (cf figure 5 ) .  (i) p = 1, r = 1 and x = 1 are the 
only three critical surfaces. (ii) Near the p = 1 surface (excluding lines BG and FG), 
q is small. We have lim,,06=s- y q and v = l .  (iii) Near the r =  1 surface 
(excluding point E and lines D G  and FG), s is small. We have lims,06= 
(1 -yq)( l  + q ~ ) - l q - l y - ~ s - ~  and U = 2. (iv) Near the x = 1 surface (excluding point C 
and lines BG and DG), y is small. We have limy...,, 6 = (1 - ~ q ) ~ ( l  + q )  q s y 
and Y = 3. (v) Near the line BG (excluding point G), both q and y are small. We 
have limq,y...o 6 = ~ - ' y - ~ q - '  and v = 4. (vi) Near the line FG (excluding point G),  both 
4 and s are small. We have limq,s,o 6 = ~ - ~ q - ' s - ~  and v = 3. (vii) Near point E but 
on the OE line, s is small. We have lims+o 6 = 2s-' and v = 1. (viii) Near the line 
D G  (excluding point G), both s and y are small. We have l ims ,y ,o~=  
(1 + q ) - l q - l ~ - ~ y - ~  and v = 5 .  (ix) Near point C but on the OC line, y is small. We 
have 6 = 3y-'  and v = 1. This again is consistent with the results of the pure 
nearest-neighbour bond with three times the bond length. (x) Near point G, all of q, 
s and y are small. We have limq.s.y-r~ 6 = 4- s y 

2 -3  - 1  

-1  -1  -2 -3 

1 -2 -3  and v = 6. 

x 

r 

Figure 5. Phase diagram and correlation length exponent for case ( 5 ) .  

Comparing the results of different cases discussed above, it is possible to predict 
the phase diagrams and much critical behaviour for more complicated systems with 
higher-neighbour bonds. For instance, if we let all of the L neighbouring bonds have 
the same occupation probability ( p  = r = x = . . .), through comparing the results (v) 
of case (3) and (x) of case ( 5 ) ,  it is plausible to predict that the critical exponent for 
such a system will be v = 1 + 2 + 3 + .  . . + L  =L(L+ 1)/2. 

In summary, we have used the transfer-matrix method to find the exact critical 
behaviour for the one-dimensional site, bond and site-bond percolation problems 
with bonds connecting Lth-nearest neighbours ( L  up to 3). For the site percolation, 
our results agree with the exact results obtained from the generating function method. 
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We find that the bond percolation contains much richer critical phenomena than the 
site percolation, especially when L becomes large. If all the L bonds have equal 
occupation probability, we predict that the critical exponents will be Y = L(L  + 1)/2. 

The authors are much indebted to L Yu for stimulating discussions and to P M Lam 
for a careful reading of the manuscript. 
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